Comparison of Neutron Activation Analysis k_0 and σ_0 Data

Richard B. Firestone Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA

> Third Co-ordination Meeting on Reference Database for Neutron Activation Analysis November 17-19, 2008 IAEA, Vienna Austria

Summary: Neutron Activation Analysis (NAA) k_0 factors from De Corte and Simonits [1] for Z≤47 have been compared with k_0 values calculated from the evaluated total thermal neutron capture radiative cross sections σ_0 in the Atlas of Neutron Resonances [2] and partial γ -ray cross sections σ_{γ} measured with neutron beams at the Budapest Reactor [3,4]. The k_0 factors derived from these independent data sources generally agree although several discrepancies need to be resolved. New self-consistent k_0 and σ_0 values have been adopted by evaluation of these data and other published information. It is proposed to publish a *Reference Database for Neutron Activation Analysis* containing the a summary of all measurements and tables of recommended k_0 and σ_0 data. These data will also be updated in the first revision of th Evaluated Gamma-ray Activation File (EGAF) [5] for dissemination by the IAEA and Lawrence Berkeley National Laboratory (LBNL).

Introduction: The Neutron Activation Analysis (NAA) k_0 factors $(k_{0,Au})_x$ for γ -rays emitted by activation products (*x*) are defined relative to the Au comparator as,

(1) $(k_{0,Au})_{x} = [M_{Au}\theta_{x}\sigma_{0,x}P_{x}]/[M_{x}\theta_{Au}\sigma_{0,Au}P_{Au}]$

where *M* is the atomic mass (M_{Au} =196.96655), θ is the isotopic abundance (θ_{Au} =100), σ_0 is the total thermal radiative cross section ($\sigma_{0,Au}$ =98.65 b), and *P* is the γ -ray transition probability (P_{Au} =0.9554). Precise k₀ factors have been measured by De Corte and Simonits [1] for the principal γ -rays from more than 130 isotopes and isomers using gold as a comparator. These values are compared in Table 1 with k₀ values derived from σ_0 values compiled in the Atlas of Neutron Resonances [2] and σ_{γ} values measured with guided neutron beams at the Budapest Reactor [3,4]. As shown in Eq. 1 k₀ values derived from σ_0 also require γ -ray transition probabilities. P_{γ} which are taken either from the Decay Data Evaluation Project (DDEP) evaluations [6] or the ENSDF database [7]. Table 1 also compares the recommended σ_0 values [2] with adopted σ_0 values from this work based on all measurements referenced in the CSISRS file [8] and the σ_{γ} and k₀ values. An example of the cross section comparison for ²⁶Mg(n, γ)²⁷Mg is shown in Table 2. New recommended k₀ values based on the adopted σ_0 values are presented in Table 1. The agreement between the De

Corte and Simonits [1] k_0 values and those derived from the cross section data are generally very good although some important discrepancies remain.

	3 0	
Reference	σ_0	$\Delta \sigma_0$
RRL23,317	0.034	0.002
PR72,888	0.048	0.01
PR88,412	0.06	0.06
78MAYAG,1495	0.0365	0.001
PRC45,1597	0.0392	0.001
NPA102,209	0.034	0.01
Gryntakis Thesis	0.035	0.02
JNE24,35	0.0382	0.0008
ADNDT 85,47	0.0371	0.0005
Budapest NAA	0.0378	0.0008
Budapest PGAA	0.0377	0.0013
Atlas Neutron Res.	0.0384	0.0006
Adopted Value	0.0379	0.0008

Table 2. ²⁶Mg(n, γ)²⁷Mg σ_0 measurements.

Discrepant values: A total of 213 k_0 and σ_0 factors for Z=5-47 are compared in Table 1. Data for additional isotopes not included in Ref. 1 have been added. Agreement is generally excellent and the following discrepancies are noted.

²³Na – σ_0 (Atlas)=517(4) mb is consistent with σ_0 (ADNDT)=513(6) mb but inconsistent with the Budapest values σ_0 (PGAA)=540(4) mb and σ_0 (NAA)=542(3) mb. The higher values are consistent with several measurements in the literature. New experiments are planned in collaboration with A. Simonits and Zs. Revay to remeasure this cross section.

³⁶S – significant variations in the abundance of ³⁶S make these k0 values very unreliable. Value from Atlas is adopted assuming normal natural abundance.

⁴¹K - $\sigma_0(\text{Atlas})=1.46(3)$ b is consistent with $\sigma_0(\text{ADNDT})=1.42(2)$ mb but inconsistent with the Budapest value $\sigma_0(\text{NAA})=1.73(1)$ b. New experiments are planned in collaboration with A. Simonits and Zs. Revay to remeasure this cross section.

⁴⁶**Ca** – k_0 (ADNDT)=8.57E-07 is lower than k_0 (Adopt)=9.97E-07 to ⁴⁷Sc. Needs to be remeasured. Possible P_γ problem.

⁶⁴Ni - $\sigma_0(Atlas)=1.64(4)$ b is consistent with $\sigma_0(ADNDT)=1.61(1)$ b but inconsistent with the Budapest value $\sigma_0(PGAA)=2.36(26)$ b. PGAA measurement will be rechecked.

 64 **Zn** - k₀(ADNDT)=5.72E-03 is lower than k₀(Adopt)=6.55E-03.

⁷⁴Ge – $k_0(ADNDT)=5.73E-04$ for 139.7 keV gamma is inconsistent with $k_0(Adopt)=6.71E-04$ and $k_0(Budapest)=6.68E-04$. New value adopted.

 $^{89}\dot{Y}$ – new cross section inconsistent with k_0 (ADNDT). Check cross section.

 98 **Mo** – For 140.5-keV gamma from 99m Tc k₀(ADNDT)=5.27E-04 is lower than k₀(Adopt)=6.05E-04 but comparable to k₀(Budapest)=5.56E-04. Check cross sections and decay scheme.

Proposed Reference Database for Neutron Activation Analysis: Evaluation of thermal neutron capture data for Neutron Activation Analysis will be completed over the next year. The resulting database will include recommended self-consistent data for k_0 values and associated target σ_0 cross sections and contain

- 1. k₀ measurements by De Corte and Simonits [1], Budapest NAA measurements with the neutron beam, and from other literature sources.
- 2. σ_0 values from the Atlas of Neutron Resonances [2], CSISRS file [8], Budapest PGAA measurements and other literature sources.
- 3. P_{γ} values from the BIPM evaluation [6] and the ENSDF file [7].
- 4. Self consistent recommended k_0 and σ_0 values for selected gamma rays and targets.
- 5. Complete gamma-ray k_0 library for all know gamma rays produced by NAA.

It is proposed to publish this database in the open literature and as the first revision of the EGAF database which is disseminated by the IAEA and Lawrence Berkeley National Laboratory, Berkeley CA.

References

[1] F. De Corte and A. Simonits, At. Data Nucl. Data Tables 85, 47-67 (2003).
[2] S.F. Mughabghab, *Atlas of Neutron Resonances*, Elsevier, Amsterdam (2006).

[3] The Evaluated Gamma-ray Activation File (EGAF), R.B. Firestone, G.L. Molnar, Zs. Revay, T. Belgya, D.P. McNabb, and B.W. Sleaford, Proceedings of the 12th International Conference on Capture Gamma-ray Spectroscopy and Related Topics, eds. A. Woehr and A. Aprahamian, South Bend, IN, Sept. 4-9, 2005, 138-147 (2005).

[4] *Handbook of Prompt Gamma Activation Analysis,* ed. G.L. Molnar, Kluwer Academic Publishers, Dordrecht (2004).

[5] The Evaluated Gamma-ray Activation File (EGAF), R.B. Firestone, G.L. Molnar, Zs. Revay, T. Belgya, D.P. McNabb, and B.W. Sleaford, Proceedings of the 12th International Conference on Capture Gamma-ray Spectroscopy and Related Topics, eds. A. Woehr and A. Aprahamian, South Bend, IN, Sept. 4-9, 2005, 138-147 (2005).

[6] *Table of Radionuclides*, ed. M.-M. Be et al, Bureau International des Poids et Measures, Pavillon de Breteuil, F-92310 Sevres (2004).

[7] Evaluated Nuclear Structure Data File, a computer file of evaluated experimental nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory.

[8] Cross Section Information Storage and Retrieval System(CSISRS), a computer file of evaluated experimental nuclear structure data maintained by the National Nuclear Data Center, Brookhaven National Laboratory.

 $\Delta E\gamma$ k0(Atlas) ±% k₀(ATNDT) ±% k₀(Budap) ±% Target Isotope t1/2 Εγ σ₀(Atlas) $\sigma_0(Adopt)$ k0(Adopt) ±% 1.08E-05 21.4 5.5(33) mb 0.2 7.07E-06 20.6 11B 12B 20.20 ms 3214.8 9.06(2) mb 1.16E-05 12.5 4438.9 0.3 1.79E-05 23.9 1.18E-05 21.3 5.5(33) mb 12B 11B 20.20 ms 9.06(2) mb 2.95E-05 14.5 3.9(3) µb 15N 16N 7.13 s 6128.63 0.04 8.83E-09 7.7 2.4(8) µb 1.43E-08 4.8 0.16(1) mb 0.175(8) mb 18O 190 26.88 s 1356.843 0.008 2.16E-08 5.1 2.36E-08 4.6 20F 1633.602 0.015 1.05E-03 1.0 9.98E-04 1.2 1.06E-03 4.2 9.51(9) mb 1.03E-03 1.0 19F 11.163 s 9.35(9) mb 37.24 s 33(5) mb 3.16E-06 21.6 23Ne 1635.96 0.03 4.36E-06 15.7 22Ne 4.25E-05 3.4 45.5(6) mb 23Na 24Na 14.9574 h 1368.626 0.005 4.70E-02 0.8 4.68E-02 0.6 4.93E-02 1.5 517(4) mb 4.92E-02 0.7 541(3) mb 23Na 24Na 4.62E-02 0.9 4.93E-02 1.5 517(4) mb 14.9574 h 2754.007 0.011 4.69E-02 0.8 541(3) mb 4.91E-02 0.7 472.207 0.009 3.63E-02 0.8 4.35E-02 0.8 400(30) mb 23Na 24Na-m 20.18 ms 478(4) mb 4.34E-02 0.7 26Mg 27Mg 9.4580 m 0.15 2.91E-06 12.7 3.02E-06 1.0 2.84E-06 21.2 38.4(6) mb 2.87E-06 12.8 170.686 37.9(8) mb 0.03 2.61E-04 2.2 2.53E-04 0.4 2.56E-04 4.7 38.4(6) mb 26Mg 27Mg 9.4580 m 843.76 37.9(8) mb 2.58E-04 2.2 26Mg 27Mg 9.4580 m 1014.44 0.04 1.02E-04 2.5 9.80E-05 2.0 1.01E-04 5.1 38.4(6) mb 37.9(8) mb 1.00E-04 2.6 1778.85 0.03 1.79E-02 1.3 1.75E-02 0.6 1.80E-02 1.3 231(3) mb 27AI 28AI 2.2414 m 232(3) mb 1.80E-02 1.3 157.3000 m 1266.15 0.1 1.72E-07 28.7 1.33E-07 7.8 30Si 31Si 1.45E-07 0.7 107(2) mb 116(3) mb 3103.36 1.96E-06 1.8 1.50E-05 26.1 236(6) mb 3.05E-06 6.8 36S 37S 5.05 m 0.02 2.89E-06 7.1 249(8) mb 1642.714 0.016 1.97E-03 3.4 38CI 37CI 37.24 m 1.97E-03 1.5 1.41E-03 20.8 433(6) mb 433(6) mb 1.97E-03 3.4 2167.405 0.009 2.62E-03 2.9 2.66E-03 1.1 1.89E-03 12.5 433(6) mb 2.62E-03 2.9 37CI 38CI 37.24 m 433(6) mb 37CI 38CI-m 671.361 0.008 6.71E-04 2.4 7.66E-04 2.1 715.00 ms 7.07E-04 15.8 47(10) mb 53.7(13) mb 660(10) mb 630(30) mb 3.28E-02 5.0 3.32E-02 40Ar 41Ar 109.61 m 1293.64 0.04 3.44E-02 4.8 41K 42K 12.360 h 312.60 0.25 1.76E-05 6.1 1.59E-05 1.3 1.46(3) b 1.733(13) b 2.09E-05 5.1 9.46E-04 0.6 1.07E-03 0.1 1.46(3) b 41K 42K 1.733(13) b 12.360 h 1524.6 0.3 9.50E-04 1.5 1.13E-03 1.1 0.1 9.57E-08 21.4 9.14E-08 1.8 46Ca 47Ca 740(70) mb 710(20) mb 9.05E-08 22.6 4.536 d 489.23 46Ca 47Ca 4.536 d 807.86 0.1 9.57E-08 21.4 9.20E-08 0.2 740(70) mb 710(20) mb 9.05E-08 22.6 4.536 d 9.54E-07 0.2 46Ca 47Ca 1297.09 0.1 1.10E-06 10.8 740(70) mb 710(20) mb 1.04E-06 11.4 8.57E-07 1.6 46Ca 47Sc 3.3492 d 159.381 0.015 1.05E-06 4.3 740(70) mb 710(20) mb 9.97E-07 4.6 1.01E-04 0.9 1.10E-04 23.8 1.09(14) b 1.125(20) b 48Ca 49Ca 3084.4 8.718 m 0.1 9.79E-05 2.3 1.01E-04 2.0 27.2(2) b 45Sc 46Sc 83.7880 d 889.271 0.002 1.26E+00 1.1 1.22E+00 0.4 26.1(3) b 1.21E+00 1.2 45Sc 46Sc 1120.537 0.003 1.26E+00 1.1 1.22E+00 1.1 27.2(2) b 83.7880 d 26.1(3) b 1.21E+00 1.2 142.528 0.007 2.86E-01 2.0 46Sc-m 45Sc 18.7500 s 2.27E-01 1.4 9.8(11) b 7.77(11) b 2.24E-01 4.4 50Ti 51Ti 5.76 m 320.076 0.006 3.77E-04 1.7 3.74E-04 1.1 3.75E-04 1.1 179(3) mb 178(3) mb 3.75E-04 1.7

Table 1. Preliminary k_0 and σ_0 values for Z=5-47 from the Atlas of Neutron Resonances (Elsevier, 2006), ADNDT 85, 47 (2003), and the Budapest Reactor Centre.

 $\Delta E\gamma k0(Atlas) \pm % k_0(ATNDT) \pm % k_0(Budap) \pm %$ Target Isotope t1/2 Εγ σ_0 (Atlas) $\sigma_0(Adopt)$ k0(Adopt) ±% 0.04 2.79E-05 3.6 2.65E-05 1.1 1.40E-04 18.8 179(3) mb 50Ti 51Ti 5.76 m 928.63 178(3) mb 2.77E-05 3.6 52V 0.02 4.85E-05 8.4 51V 3.743 m 647.47 4.72E-05 10.4 5.04(4) b 4.85(5) b 4.76E-05 8.6 51V 52V 0.03 1.19E-03 2.0 1.16E-03 1.8 5.04(4) b 1.17E-03 2.0 3.743 m 1333.62 4.85(5) b 1.96E-01 1.2 1.97E-01 2.1 52V 51V 3.743 m 1434.06 0.01 2.02E-01 1.4 5.04(4) b 4.85(5) b 1.98E-01 1.5 320.0835 0.0004 2.65E-03 2.0 2.62E-03 5.0 3.82E-05 22.1 15.4(2) b 15.7(3) b 2.71E-03 1.9 50Cr 51Cr 27.703 d 410(40) mb 440(30) mb 55Cr 3.497 m 1528.0 0.2 2.65E-07 10.6 2.84E-07 9.9 54Cr 2.5788 h 4.96E-01 0.6 4.98E-01 0.3 13.36(5) b 55Mn 56Mn 846.7638 0.0019 5.02E-01 0.4 13.41(5) b 5.04E-01 0.4 1810.726 0.004 1.37E-01 1.5 1.35E-01 0.4 1.38E-01 3.0 13.36(5) b 55Mn 56Mn 2.5788 h 13.41(5) b 1.37E-01 1.5 2113.092 0.006 7.22E-02 2.1 7.17E-02 0.2 7.27E-02 2.6 13.36(5) b 55Mn 56Mn 2.5788 h 13.41(5) b 7.24E-02 2.1 1.33E-06 2.2 58Fe 59Fe 44.495 d 142.651 0.002 1.35E-06 2.2 1.33E-06 1.5 1.32(3) b 1.30(2) b 58Fe 59Fe 44.495 d 192.349 0.005 4.06E-06 1.8 3.78E-06 0.5 1.32(3) b 1.30(2) b 4.00E-06 1.9 334.8 58Fe 59Fe 44.495 d 0.2 3.68E-07 3.1 3.82E-07 0.0 1.32(3) b 1.30(2) b 3.62E-07 3.1 59Fe 1099.245 0.003 7.88E-05 1.6 7.77E-05 0.5 1.32(3) b 58Fe 44.495 d 1.30(2) b 7.76E-05 1.6 1291.590 0.006 6.02E-05 1.6 1.32(3) b 1.30(2) b 5.93E-05 1.7 58Fe 59Fe 44.495 d 5.93E-05 0.3 5.2710 y 1173.228 0.003 1.32E+00 0.3 1.32E+00 0.4 59Co 60Co 37.18(6) b 37.10(11) b 1.31E+00 0.3 60Co 1332.492 0.004 1.32E+00 0.3 1.32E+00 0.5 37.18(6) b 59Co 37.10(11) b 5.2710 y 1.32E+00 0.3 58.603 0.007 1.48E-02 3.3 1.51E-02 0.8 1.46E-02 1.0 20.4(8) b 59Co 60Co-m 10.467 m 21.0(3) b 1.52E-02 3.2 59Co 60Co-m 1.75E-03 1.4 2.41E-03 11.8 10.467 m 1332.501 0.005 1.74E-03 12.6 20.4(8) b 21.0(3) b 1.79E-03 12.2 2.51E-05 1.2 2.73E-05 28.6 3.64E-05 9.3 65Ni 64Ni 2.5172 h 366.27 0.03 2.59E-05 13.1 1.64(4) b 2.3(3) b 8.14E-05 0.5 1.12E-04 64Ni 65Ni 2.5172 h 1115.53 0.04 8.34E-05 13.1 1.64(4) b 2.3(3) b 1.17E-04 9.3 1.27E-04 0.6 1.42E-04 12.5 1.79E-04 9.3 65Ni 64Ni 2.5172 h 1481.84 0.05 1.28E-04 13.1 1.64(4) b 2.3(3) b 12.701 h 3.83E-02 1.0 64Cu 3.70E-02 0.0 63Cu 511 3.62E-02 1.0 4.50(2) b 4.76(3) b 63Cu 64Cu 12.701 h 1345.77 0.16 4.86E-04 2.2 4.98E-04 0.9 5.10E-04 1.9 4.50(2) b 5.14E-04 2.1 4.76(3) b 1.86E-03 0.5 1.97E-03 2.2 2.17(3) b 65Cu 66Cu 1039.2 2.02E-03 1.4 5.12 m 0.2 2.03E-03 1.3 2.16(2) b 1115.539 0.002 6.16E-03 3.6 5.72E-03 0.3 6.55E-03 3.4 64Zn 65Zn 244.01 d 790(20) mb 840(30) mb 0.2 7.71E-08 41.5 68Zn 69Zn 318.4 56.4 m 1.0(1) b 0.79(3) b 5.70E-08 41.5 68Zn 69Zn-m 13.76 h 438.634 0.018 4.10E-04 4.2 3.98E-04 0.6 3.91E-04 3.9 72(4) mb 73(3) mb 4.10E-04 4.2 70Zn 71Zn 121.52 1.09E-07 3.0 83(5) mb 2.45 m 0.05 4.93E-07 16.9 22(3) mb 1.43E-07 10.0 70Zn 71Zn 511.6 0.1 5.26E-06 14.0 1.55E-06 2.1 2.45 m 83(5) mb 22(3) mb 1.39E-06 14.0 69Ga 70Ga 21.14 m 176.17 0.02 9.14E-05 4.1 6.29E-05 33.3 1.75(7) b 2.22(5) b 1.16E-04 3.2

Table 1. Preliminary k_0 and σ_0 values for Z=5-47 from the Atlas of Neutron Resonances (Elsevier, 2006), ADNDT 85, 47 (2003), and the Budapest Reactor Centre.

Table 1. Preliminary k_0 and σ_0 values for Z=5-47 from the Atlas of Neutron Resonances (Elsevier, 2006), ADNDT 85, 47 (2003), and the Budapest Reactor Centre.

Targe	t Isotope	t1/2	Εγ	∆Eγ k	k0(Atlas)	±%	k ₀ (ATNDT)	±%	k ₀ (Budap)	±%	σ₀(Atlas)	σ_0 (Adopt)	k0(Adopt) ±%
69Ga	70Ga	21.14 m	1039.2	0.08 2	2.05E-04	8.0			2.10E-04	14.3	1.75(7) b	2.22(5) b	2.60E-04 6.3
71Ga	72Ga	14.10 h	629.96	0.04	1.37E-02	2.1	1.49E-02	1.0	1.47E-02	4.5	4.61(15) b	4.63(4) B	1.37E-02 2.1
71Ga	72Ga	14.10 h	834.03	0.03 క	5.27E-02	0.9	5.23E-02	0.6	4.95E-02	3.0	4.61(15) b	4.63(4) B	5.29E-02 0.9
71Ga	72Ga	14.10 h	894.25	0.1 క	5.45E-03	1.9	5.46E-03	0.9	4.95E-04	8.5	4.61(15) b	4.63(4) B	5.47E-03 1.9
71Ga	72Ga	14.10 h	1050.69	0.05 (3.81E-03	1.9	3.83E-03	0.8	3.57E-03	10.9	4.61(15) b	4.63(4) B	3.83E-03 1.9
71Ga	72Ga	14.10 h	2201.66	0.07 ·	1.43E-02	2.0	1.48E-02	1.0	1.56E-02	7.7	4.61(15) b	4.63(4) B	1.43E-02 2.0
71Ga	72Ga	14.10 h	2490.98	0.07 4	4.23E-03	3.1	4.19E-03	1.7	5.10E-03	23.5	4.61(15) b	4.63(4) B	4.25E-03 3.1
71Ga	72Ga	14.10 h	2507.79	0.07	7.04E-03	2.0	7.16E-03	2.2	8.39E-03	14.3	4.61(15) b	4.63(4) B	7.07E-03 2.0
70Ge	71Ge-m	20.4 ms	174.954	0.005	1.54E-03	21.4			2.24E-03	6.4	280(70) mb	470(100) mb	2.58E-03 12.7
74Ge	75Ge	82.78 m	198.6	0.1 (6.44E-05	13.9	6.15E-05	1.0	5.18E-04	6.7	360(40) mb	420(40) mb	5.20E-05 17.2
74Ge	75Ge	82.78 m	468.8	0.2	1.21E-05	14.2	1.20E-05	8.3			360(40) mb	420(40) mb	9.80E-06 17.4
74Ge	75Ge	82.78 m	617.7	0.2 (6.19E-06	14.5	4.69E-06	1.1			360(40) mb	420(40) mb	5.00E-06 17.9
74Ge	75Ge-m	47.7 s	139.68	0.03 (6.75E-04	3.7	5.73E-04	1.6	6.68E-04	3.0	164(10) mb	163(5) mb	6.71E-04 3.7
76Ge	77Ge	11.30 h	211.03	0.03 క	5.20E-05	5.7	3.90E-05				100(10) mb	63(3) mb	4.25E-05 9.0
76Ge	77Ge	11.30 h	215.5	0.03 4	4.83E-05	5.7	3.55E-05				100(10) mb	63(3) mb	3.95E-05 9.1
76Ge	77Ge	11.30 h	264.44	0.03	1.18E-04	4.9	6.88E-05		4.58E-04	10.7	100(10) mb	63(3) mb	7.44E-05 7.7
76Ge	77Ge	11.30 h	367.4	0.03	2.36E-05	5.4	1.94E-05				100(10) mb	63(3) mb	1.93E-05 8.5
76Ge	77Ge	11.30 h	416.33	0.03 (3.68E-05	5.3	3.06E-05		2.09E-04	10.0	100(10) mb	63(3) mb	3.01E-05 8.5
76Ge	77Ge	11.30 h	558.02	0.03	2.71E-05	5.4	2.28E-05				100(10) mb	63(3) mb	2.22E-05 8.6
76Ge	77Ge	11.30 h	631.82	0.03	1.17E-05	5.4	1.04E-05				100(10) mb	63(3) mb	9.59E-06 8.5
76Ge	77Ge	11.30 h	1085.19	0.03	1.02E-05	5.3	8.35E-06				100(10) mb	63(3) mb	8.34E-06 8.4
76Ge	77As	38.83 h	239.011	0.006 (3.48E-06						100(10) mb	63(3) mb	6.27E-06 14.9
76Ge	77Ge-m	52.9 s	159.7	0.1	2.26E-05	23.8	2.45E-05	1.0	2.88E-05	23.0	55(2) mb	140(30) mb	3.16E-05 17.0
76Ge	77Ge-m	52.9 s	215.53	0.06	4.73E-05	26.3			7.20E-05	16.0	55(2) mb	140(30) mb	6.62E-05 18.8
75As	76As	26.24 h	559.1	0.05 క	5.13E-02	6.6	4.83E-02	1.7	5.58E-02	0.5	4.09(8) b	4.33(23) b	5.44E-02 6.2
75As	76As	26.24 h	563.23	0.05	1.37E-03	8.4	1.40E-03	1.6	1.51E-03	5.6	4.09(8) b	4.33(23) b	1.45E-03 7.9
75As	76As	26.24 h	657.05	0.05	7.03E-03	8.3	6.61E-03	1.4	7.78E-03	5.0	4.09(8) b	4.33(23) b	7.45E-03 7.9
75As	76As	26.24 h	1212.92	0.05	1.64E-03	9.1	1.52E-03	1.3	1.81E-03	6.2	4.09(8) b	4.33(23) b	1.74E-03 8.6
75As	76As	26.24 h	1216.08	0.05 (3.90E-03	8.4	3.73E-03	0.8	4.32E-03	5.2	4.09(8) b	4.33(23) b	4.13E-03 8.0
75As	76As	26.24 h	1228.52	0.05	1.39E-03				1.53E-03		4.09(8) b	4.33(23) b	1.47E-03 9.4

Targe	t Isotope	t1/2	Εγ	ΔΕγ	k0(Atlas)	±%	k ₀ (ATNDT)	±%	k ₀ (Budap)	±%	σ₀(Atlas)	σ ₀ (Adopt)	k0(Adopt) ±%
75As	76As	26.24 h	2096.3	0.05	6.26E-04				6.92E-04		4.09(8) b	4.33(23) b	6.63E-04 8.2
74Se	75Se	119.79 d	121.1155	0.0011	2.11E-03	2.7	1.94E-03	0.6			52.2(8) b	50(1) b	2.03E-03 2.8
74Se	75Se	119.79 d	136.0001	0.0006	7.16E-03	2.3	6.76E-03	1.0			52.2(8) b	50(1) b	6.85E-03 2.4
74Se	75Se	119.79 d	264.6576	0.0009	7.24E-03	2.1	7.11E-03	0.7			52.2(8) b	50(1) b	6.94E-03 2.2
74Se	75Se	119.79 d	279.5422	0.001	3.07E-03	2.1	3.00E-03	1.2			52.2(8) b	50(1) b	2.94E-03 2.2
74Se	75Se	119.79 d	400.6572	0.0008	1.41E-03	2.1	1.43E-03	0.8			52.2(8) b	50(1) b	1.35E-03 2.2
76Se	77Se-m	17.36 s	162	0.1	2.64E-02	3.2	2.49E-02	20.1	2.26E-02	2.7	20(1)	17.2(5) b	2.27E-02 3.7
78Se	79Se-m	3.91 m	95.73	0.03	2.29E-04	5.5					380(20) mb	380(20) mb	2.29E-04 5.5
79Br	80Br	17.68 m	616.3	0.5	9.17E-03	11.7	6.92E-03	0.3	6.70E-03	1.6	7.88(24) b	7.9(6) b	7.02E-03 15.3
79Br	80Br	17.68 m	665.8	0.2	1.48E-03	14.3	1.22E-03	0.5	1.44E-03	5.5	7.88(24) b	7.9(6) b	1.13E-03 18.6
79Br	80Br-m	4.4205 h	37.052	0.002	1.26E-02	3.8					2.44(8) b	2.46(8) b	1.28E-02 3.8
79Br	80Br-m	4.4205 h	85.902	0.03	1.03E-04	4.3					2.44(8) b	2.46(8) b	1.03E-04 4.3
81Br	82Br	35.282 h	554.348	0.002	2.15E-02	3.6	2.38E-02	1.1			235(8) mb	235(8) mb	2.15E-03 36.1
81Br	82Br	35.282 h	619.106	0.004	1.32E-02	3.6	1.45E-02	0.8			235(8) mb	235(8) mb	1.32E-03 36.2
81Br	82Br	35.282 h	698.374	0.005	8.57E-03	3.7	9.38E-03	1.0			235(8) mb	235(8) mb	8.57E-04 37.3
81Br	82Br	35.282 h	776.517	0.003	2.53E-02	3.7	2.76E-02	0.8			235(8) mb	235(8) mb	2.53E-03 36.8
81Br	82Br	35.282 h	827.828	0.006	7.28E-03	3.8	7.99E-03	0.9			235(8) mb	235(8) mb	7.28E-04 38.0
81Br	82Br	35.282 h	1044.002	0.005	8.57E-03	3.7	9.14E-03	0.7			235(8) mb	235(8) mb	8.57E-04 37.3
81Br	82Br	35.282 h	1317.473	0.01	8.11E-03	3.7	8.91E-03	0.4			235(8) mb	235(8) mb	8.11E-04 37.5
81Br	82Br	35.282 h	1474.88	0.01	5.03E-03	3.7	5.42E-03	0.5			235(8) mb	235(8) mb	5.03E-04 36.8
81Br	82Br-m	6.13 m	776.52	0.01	7.11E-05	11.6					2.12(5) b	2.29(3) b	7.68E-05 10.8
78Kr	79Kr-m	50 s	130.01	0.02	4.35E-06	16.8					108(30) mb	180(30) mb	4.35E-06 16.8
80Kr	81Kr-m	13.10 s	190.46	0.16	1.74E-03	9.0					4.53(65) b	5.6(5) b	2.15E-03 7.3
82Kr	83Kr-m	1.83 h	9.4051	0.0008	2.41E-03	21.3					15.1(27) b	19(4) b	3.03E-03 16.9
82Kr	83Kr-m	1.83 h	32.1498	0.0008	2.14E-05	21.3					15.1(27) b	19(4) b	2.69E-05 16.9
84Kr	85Kr-m	4.480 h	151.195	0.006	9.59E-04	7.1					90(13) mb	85(6) mb	9.06E-04 7.5
84Kr	85Kr-m	4.480 h	304.87	0.02	1.79E-04	7.4					90(13) mb	85(6) mb	1.69E-04 7.8
86Kr	87Kr	76.3 m	402.587	0.01	6.42E-06	23.9					3(2) mb	3.4(8) mb	7.28E-06 21.1
86Kr	87Kr	76.3 m	673.83	0.08	2.45E-07	23.7					3(2) mb	3.4(8) mb	2.77E-07 20.9
86Kr	87Kr	76.3 m	845.44	0.04	9.50E-07	23.7					3(2) mb	3.4(8) mb	1.08E-06 20.9

Table 1. Preliminary k_0 and σ_0 values for Z=5-47 from the Atlas of Neutron Resonances (Elsevier, 2006), ADNDT 85,47 (2003), and the Budapest Reactor Centre.

Targe	t Isotope	t1/2	Εγ	ΔΕγ	k0(Atlas)	±%	k ₀ (ATNDT)	±%	k₀(Budap)	±%	σ_0 (Atlas)	σ₀(Adopt)	k0(Adopt)	±%
86Kr	87Kr	76.3 m	1175.4	0.08	1.43E-07	23.7					3(2) mb	3.4(8) mb	3.93E-09	28.6
86Kr	87Kr	76.3 m	1740.52	0.08	2.64E-07	23.6					3(2) mb	3.4(8) mb	2.99E-07	20.9
86Kr	87Kr	76.3 m	2011.88	0.1	3.73E-07	23.9					3(2) mb	3.4(8) mb	4.23E-07	21.1
86Kr	87Kr	76.3 m	2554.8	0.2	1.19E-06	24.0					3(2) mb	3.4(8) mb	1.35E-06	21.2
86Kr	87Kr	76.3 m	2558.1	0.2	5.07E-07	24.4					3(2) mb	3.4(8) mb	5.75E-07	21.5
85Rb	86Rb	18.642 d	1077	0.4	7.53E-04	1.3	7.65E-04	1.0	7.36E-04	1.7	494(7) mb	501(6) mb	7.64E-04	1.3
87Rb	88Rb	17.78 m	898.03	0.04	1.17E-04	6.6	1.01E-04	1.5	1.14E-04	0.6	122(3) mb	90(3) mb	8.60E-05	8.9
87Rb	88Rb	17.78 m	1836	0.05	1.78E-04	6.6	1.57E-04	1.1	1.75E-04	1.1	122(3) mb	90(3) mb	1.31E-04	9.0
87Rb	88Rb	17.78 m	2677.892	0.021	1.63E-05	6.7	1.47E-05	1.4			122(3) mb	90(3) mb	1.20E-05	9.1
84Sr	85Sr	64.850 d	514.0048	0.0022	9.74E-05	1.2	9.15E-05	0.9			199(10) mb	81(6) mb	9.14E-05	1.3
84Sr	85Sr-m	67.63 m	231.86	0.02	7.02E-05	2.7	6.92E-05	1.0	6.92E-05	10.3	623(6) mb	614(6) mb	6.92E-05	2.8
86Sr	87Sr	2.815 h	388.531	0.003	1.49E-03	2.5	1.49E-03	0.5	1.87E-03	2.9	770(60) mb	820(20) mb	1.59E-03	2.3
89Y	90Y	3.19 h	202.53	0.03	2.28E-05	12.1	2.36E-05	1.9			1.0(2) mb	2.5(3) mb	5.71E-05	4.8
89Y	90Y	3.19 h	479.51	0.07	2.14E-05	12.0	2.23E-05	0.9			1.0(2) mb	2.5(3) mb	5.35E-05	4.8
94Zr	95Zr	64.032 d	724.193	0.003	8.71E-05	1.3	8.90E-05	1.2			49.4(17) mb	50.4(6) mb	8.88E-05	1.3
94Zr	95Zr	64.032 d	756.729	0.012	1.07E-04	1.3	1.10E-04	1.3			49.4(17) mb	50.4(6) mb	1.09E-04	1.2
94Zr	95Nb	34.991 d	765.803	0.006	1.94E-04	1.2	2.17E-04	1.6			49.4(17) mb	50.4(6) mb	2.00E-04	1.2
96Zr	97Zr	16.744 m	254.17	0.14	1.68E-07	7.1	1.82E-07	2.0			22.9(10) mb	21.2(6) mb	1.56E-07	7.7
96Zr	97Zr	16.744 m	355.4	0.09	3.08E-07	5.3	2.92E-07	2.0			22.9(10) mb	21.2(6) mb	2.85E-07	5.7
96Zr	97Zr	16.744 m	507.64	0.08	7.38E-07	4.7	6.79E-07	0.2			22.9(10) mb	21.2(6) mb	6.83E-07	5.0
96Zr	97Zr	16.744 m	602.37	0.14	2.02E-07	6.1	1.90E-07	2.0			22.9(10) mb	21.2(6) mb	1.87E-07	6.6
96Zr	97Zr	16.744 m	703.76	0.05	1.49E-07	5.4	1.36E-07	2.0			22.9(10) mb	21.2(6) mb	1.38E-07	5.8
96Zr	97Zr	16.744 m	1147.97	0.08	3.84E-07	4.8	3.41E-07	2.0			22.9(10) mb	21.2(6) mb	3.56E-07	5.2
96Zr	97Nb	72.1 m	657.94	0.09	1.44E-05	2.8	1.24E-05	0.9			22.9(10) mb	21.2(6) mb	1.34E-05	3.1
96Zr	97Nb-m	52.7 s	743.36	0.03	1.43E-05	2.8	1.24E-05	0.3			21.3(10) mb	19.7(6) mb	1.33E-05	3.0
93Nb	94Nb	2.03E+04 y	702.622	0.019	2.54E-02	3.5					1.15(5) b	1.39(4) b	3.06E-02	2.9
93Nb	94Nb	2.03E+04 y	871.091	0.018	2.59E-02	2.9					1.15(5) b	1.39(4) b	3.13E-02	2.4
93Nb	94Nb-m	6.263 m	871.087	0.018	1.29E-04	12.3	9.70E-05	1.6	1.57E-04	8.6		1.04(4) b		
92Mo	93Mo-m	6.85 h	743.36	0.03								2.0E-7(7) b		
98Mo	99Mo	2.7479 d	181.068	0.008	4.11E-05	2.9	4.15E-05	0.6			130(6) mb	136(3) mb	4.30E-05	2.7

Table 1. Preliminary k_0 and σ_0 values for Z=5-47 from the Atlas of Neutron Resonances (Elsevier, 2006), ADNDT 85,47 (2003), and the Budapest Reactor Centre.

Target Isotope	t1/2	Εγ	ΔΕγ	k0(Atlas)	±%	k ₀ (ATNDT)	±%	k₀(Budap)	±%	σ₀(Atlas)	σ₀(Adopt)	k0(Adopt)	±%
98Mo 99Mo	2.7479 d	366.421	0.015	8.16E-06	2.9	8.36E-06	1.3			130(6) mb	136(3) mb	8.54E-06	2.8
98Mo 99Mo	2.7479 d	739.5	0.017	8.28E-05	2.5	8.46E-05	0.7			130(6) mb	136(3) mb	8.66E-05	2.4
98Mo 99Mo	2.7479 d	777.921	0.02	2.92E-05	2.9	2.97E-05	0.7			130(6) mb	136(3) mb	3.06E-05	2.8
98Mo 99Tc-m	6.0067 h	140.511	0.001	6.12E-04	2.9	5.27E-04	0.5	5.56E-04	2.6	130(6) mb	136(3) mb	6.05E-04	2.3
100Mo 101Mo	14.61 m	80.92	0.03	1.56E-05	3.5	1.80E-05	3.0			199(3) mb	197(3) mb	1.54E-05	3.5
100Mo 101Mo	14.61 m	191.92	0.02	7.60E-05	1.9	7.25E-05	1.7			199(3) mb	197(3) mb	7.53E-05	1.9
100Mo 101Mo	14.61 m	195.93	0.04	1.16E-05	3.3	1.11E-05	1.8			199(3) mb	197(3) mb	1.14E-05	3.3
100Mo 101Mo	14.61 m	408.69	0.06	6.39E-06	4.1	5.85E-06	30.8			199(3) mb	197(3) mb	6.32E-06	4.1
100Mo 101Mo	14.61 m	499.65	0.03	5.82E-06	3.7	5.63E-06	3.0			199(3) mb	197(3) mb	5.76E-06	3.7
100Mo 101Mo	14.61 m	695.56	0.06	2.78E-05	2.9	2.79E-05	1.8			199(3) mb	197(3) mb	2.75E-05	2.9
100Mo 101Mo	14.61 m	713.04	0.09	1.39E-05	4.8	1.37E-05	2.9			199(3) mb	197(3) mb	1.38E-05	4.8
100Mo 101Mo	14.61 m	877.39	0.04	1.35E-05	6.0	1.53E-05	3.3			199(3) mb	197(3) mb	1.33E-05	6.0
100Mo 101Mo	14.61 m	1011.05	0.14	3.72E-06	8.4	3.75E-06	2.9			199(3) mb	197(3) mb	3.69E-06	8.5
100Mo 101Mo	14.61 m	1012.47	0.04	5.44E-05	5.5	5.80E-05	2.2			199(3) mb	197(3) mb	5.38E-05	5.6
100Mo 101Mo	14.61 m	1160.98	0.04	1.68E-05	3.7	1.82E-05	3.0			199(3) mb	197(3) mb	1.66E-05	3.7
100Mo 101Mo	14.61 m	1304	0.04	1.13E-05	3.3	1.30E-05	3.1			199(3) mb	197(3) mb	1.12E-05	3.3
100Mo 101Mo	14.61 m	1532.49	0.04	2.56E-05	3.5	2.73E-05	2.9			199(3) mb	197(3) mb	2.54E-05	3.6
100Mo 101Tc	14.22 m	127.22	0.03	1.08E-05	3.4	1.20E-05	5.0			199(3) mb	197(3) mb	1.07E-05	3.4
100Mo 101Tc	14.22 m	184.12	0.05	6.59E-06	3.7	5.50E-06	0.0			199(3) mb	197(3) mb	6.52E-06	3.7
100Mo 101Tc	14.22 m	306.83	0.03	2.01E-07	16.4	3.73E-04	1.3	3.33E-04	3.8	199(3) mb	197(3) mb	3.62E-04	5.3
100Mo 101Tc	14.22 m	531.42	0.05	4.14E-06	3.9	5.01E-06	3.0			199(3) mb	197(3) mb	4.10E-06	3.9
100Mo 101Tc	14.22 m	545.05	0.06	2.46E-05	3.1	2.49E-05	1.0			199(3) mb	197(3) mb	2.44E-05	3.1
96Ru 97Ru	2.9 d	215.7	0.03	2.84E-04	2.5	2.25E-04	0.4			290(20) mb	225(5) mb	2.21E-04	3.2
102Ru 103Ru	39.26 d	497.084	0.006	7.54E-03	4.3	6.89E-03	0.4			290(20) mb	225(5) mb	7.24E-03	4.5
102Ru 103Ru	39.26 d	610.33	0.02	4.77E-04	4.2	4.30E-04	0.5			1.27(4) b	1.22(5) b	4.58E-04	4.4
102Ru 103Ru-m	1.69 ms	210.519	0.023										
104Ru 105Ru	4.44 h	262.83	0.1	1.24E-04	2.6	1.31E-04	1.5			491(10) mb	489(5) mb	1.24E-04	2.6
104Ru 105Ru	4.44 h	469.37	0.1	3.32E-04	3.3	3.26E-04	1.5	5.81E-04	3.2	491(10) mb	489(5) mb	3.30E-04	3.3
104Ru 105Ru	4.44 h	676.36	0.08	2.96E-04	3.4	2.95E-04	3.1	5.19E-04	3.6	491(10) mb	489(5) mb	2.95E-04	3.4
104Ru 105Ru	4.44 h	724.3	0.03	8.94E-04	1.5	8.87E-04	1.7	1.57E-03	1.5	491(10) mb	489(5) mb	8.91E-04	1.5

Table 1. Preliminary k_0 and σ_0 values for Z=5-47 from the Atlas of Neutron Resonances (Elsevier, 2006), ADNDT 85,47 (2003), and the Budapest Reactor Centre.

Table 1. Preliminary k_0 and σ_0 values for Z=5-47 from the Atlas of Neutron Resonances (Elsevier, 2006), ADNDT 85,47 (2003), and the Budapest Reactor Centre.

Target Isotope	t1/2	Εγ	ΔΕγ	k0(Atlas)	±%	k ₀ (ATNDT)	±%	k ₀ (Budap)	±%	σ_0 (Atlas)	σ ₀ (Adopt)	k0(Adopt) ±%
104Ru 105Rh	35.36 h	306.1	0.2	9.64E-05	6.5	1.01E-04	1.5			491(10) mb	489(5) mb	9.60E-05 6.5
104Ru 105Rh	35.36 h	318.9	0.1	3.61E-04	3.3	3.57E-04	1.7			491(10) mb	489(5) mb	3.60E-04 3.3
104Ru 105Rh-m	43 s	129.57	0.08	1.07E-04	4.2	9.20E-05	1.3	4.96E-05	25.0	27.9(8) mb	27.8(6) mb	1.06E-04 4.2
103Rh 104Rh	42.3 s	555.81	0.04	5.83E-02	25.0	6.92E-02	1.4	6.38E-02	2.9	143.5(15) b		
103Rh 104Rh-m	4.34 m	55.81	0.04	2.80E-04	12.6			1.54E-02	19.7	10.6(3) b		
108Pd 109Pd	13.7012 h	309.1	0.5	1.93E-06	30.2	1.90E-06	2.1			8.48(50) b	8.34(8) b	2.11E-06 27.5
108Pd 109Pd	13.7012 h	311.4	0.1	1.26E-05	9.6	1.48E-05	1.4			8.48(50) b	8.34(8) b	1.39E-05 8.8
108Pd 109Pd	13.7012 h	602.5	0.1	3.15E-06	6.6	3.43E-06	0.0			8.48(50) b	8.34(8) b	3.46E-06 6.0
108Pd 109Pd	13.7012 h	636.3	0.1	3.94E-06	5.5	4.62E-06	0.0			8.48(50) b	8.34(8) b	4.32E-06 5.1
108Pd 109Pd	13.7012 h	647.3	0.1	9.64E-06	3.0	1.13E-05	0.5			8.48(50) b	8.34(8) b	1.06E-05 2.8
108Pd 109Pd	13.7012 h	781.4	0.2	4.43E-06	11.3	4.61E-06	0.0			8.48(50) b	8.34(8) b	4.86E-06 10.3
108Pd 109Pd-m	4.696 m	188.9	0.1	5.37E-04	5.5	4.94E-04	0.3	5.36E-04	5.5	185(10) mb	185(10) mb	5.37E-04 5.5
108Pd 109Ag-m	39.6 s	88.0336	0.0001	1.46E-03	2.9	1.71E-03	0.0			389(23) mb	383(4) mb	1.60E-03 2.6
110Pd 111Pd	5.5 h	172.2	0.1	2.58E-05	4.4	1.07E-05	1.4			700(170) mb	370(100) mb	1.07E-05 10.5
107Ag 108Ag	2.395 m	433.938	0.005	1.74E-03	15.3	1.59E-03	1.9			37.6(12) b	37.9(4) b	1.75E-03 15.1
107Ag 108Ag	2.395 m	618.86	0.05	9.25E-04	16.0	9.33E-04	0.0			37.6(12) b	37.9(4) b	9.33E-04 15.8
107Ag 108Ag	2.395 m	632.98	0.05	6.12E-03	16.1	6.10E-03	2.0	7.15E-03	5.7	37.6(12) b	37.9(4) b	6.17E-03 16.0
109Ag 110Ag	24.56 s	657.76	0.0011	3.74E-02	9.0	3.06E-02	0.4	3.60E-02	2.7	91(1) b	91(2) b	3.91E-02 8.6
109Ag 110Ag-m	249.78 d	446.812	0.003	1.35E-03	1.9	1.36E-03	1.5			3.95(5) b	3.99(5) b	1.36E-03 1.8
109Ag 110Ag-m	249.78 d	620.3553	0.0017	1.00E-03	3.2	1.02E-03	0.7			3.95(5) b	3.99(5) b	1.01E-03 3.2
109Ag 110Ag-m	249.78 d	657.76	0.0011	3.48E-02	1.3	3.50E-02	0.7			3.95(5) b	3.99(5) b	3.51E-02 1.2
109Ag 110Ag-m	249.78 d	677.6217	0.0012	3.89E-03	1.4	3.93E-03	1.3			3.95(5) b	3.99(5) b	3.93E-03 1.4
109Ag 110Ag-m	249.78 d	687.0091	0.0018	2.38E-03	1.3	2.43E-03	1.1			3.95(5) b	3.99(5) b	2.40E-03 1.3
109Ag 110Ag-m	249.78 d	706.676	0.0015	6.07E-03	1.3	6.03E-03	0.8			3.95(5) b	3.99(5) b	6.14E-03 1.3
109Ag 110Ag-m	249.78 d	744.2755	0.0018	1.74E-03	1.4	1.69E-03	1.2			3.95(5) b	3.99(5) b	1.75E-03 1.4
109Ag 110Ag-m	249.78 d	763.9424	0.0017	8.22E-03	1.3	8.27E-03	0.7			3.95(5) b	3.99(5) b	8.31E-03 1.3
109Ag 110Ag-m	249.78 d	818.0244	0.0018	2.70E-03	1.4	2.69E-03	1.1			3.95(5) b	3.99(5) b	2.73E-03 1.4
109Ag 110Ag-m	249.78 d	884.6781	0.0013	2.73E-02	2.0	2.69E-02	0.7			3.95(5) b	3.99(5) b	2.75E-02 2.0
109Ag 110Ag-m	249.78 d	937.485	0.003	1.27E-02	1.5	1.27E-02	0.8			3.95(5) b	3.99(5) b	1.28E-02 1.5
109Ag 110Ag-m	249.78 d	1384.2931	0.002	9.10E-03	2.4	9.12E-03	0.9			3.95(5) b	3.99(5) b	9.20E-03 2.4

Table 1. Preliminary k_0 and σ_0 values for Z=5-47 from the Atlas of Neutron Resonances (Elsevier, 2006), ADNDT 85,47 (2003), and the Budapest Reactor Centre.

Target Isotope	t1/2	Εγ ΔΕγ	k0(Atlas)	±%	k ₀ (ATNDT)	±% k ₀ (Budap) ±	-%	σ₀(Atlas)	σ ₀ (Adopt)	k0(Adopt) ±%
109Ag 110Ag-m	249.78 d	1475.7792 0.0023	1.49E-03	1.8	1.50E-03	0.7		3.95(5) b	3.99(5) b	1.50E-03 1.7
109Ag 110Ag-m	249.78 d	1505.028 0.002	4.85E-03	1.7	4.84E-03	0.8		3.95(5) b	3.99(5) b	4.90E-03 1.7
109Ag 110Ag-m	249.78 d	1562.294 0.0018	4.46E-04	2.8	4.35E-04	0.9		3.95(5) b	3.99(5) b	4.50E-04 2.8